Coverage Probability of Confidence Intervals for the Normal Mean and Variance with Restricted Parameter Space

نویسنده

  • Sa-aat Niwitpong
چکیده

Recent articles have addressed the problem to construct the confidence intervals for the mean of a normal distribution where the parameter space is restricted, see for example Wang [Confidence intervals for the mean of a normal distribution with restricted parameter space. Journal of Statistical Computation and Simulation, Vol. 78, No. 9, 2008, 829–841.], we derived, in this paper, analytic expressions of the coverage probability and the expected length of confidence interval for the normal mean when the whole parameter space is bounded. We also construct the confidence interval for the normal variance with restricted parameter for the first time and its coverage probability and expected length are also mathematically derived. As a result, one can use these criteria to assess the confidence interval for the normal mean and variance when the parameter space is restricted without the back up from simulation experiments. Keywords—confidence interval, coverage probability, expected length, restricted parameter space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

Monte Carlo Comparison of Approximate Tolerance Intervals for the Poisson Distribution

The problem of finding  tolerance intervals receives very much attention of researchers and are widely used in various statistical fields, including biometry, economics, reliability analysis and quality control. Tolerance interval is a random interval  that covers a specified  proportion of the population with a specified confidence level. In this paper, we compare approximate tolerance interva...

متن کامل

Joint Confidence Regions

Confidence intervals are one of the most important topics in mathematical statistics which are related to statistical hypothesis tests. In a confidence interval, the aim is that to find a random interval that coverage the unknown parameter with high probability. Confidence intervals and its different forms have been extensively discussed in standard statistical books. Since the most of stati...

متن کامل

Growth Estimators and Confidence Intervals for the Mean of Negative Binomial Random Variables with Unknown Dispersion

The negative binomial distribution becomes highly skewed under extreme dispersion. Even at moderately large sample sizes, the sample mean exhibits a heavy right tail. The standard normal approximation often does not provide adequate inferences about the data’s expected value in this setting. In previous work, we have examined alternative methods of generating confidence intervals for the expect...

متن کامل

Exact average coverage probabilities and confidence coefficients of confidence intervals for discrete distributions

For a confidence interval (L(X),U(X)) of a parameter θ in one-parameter discrete distributions, the coverage probability is a variable function of θ . The confidence coefficient is the infimum of the coverage probabilities, infθ Pθ (θ ∈ (L(X),U(X))). Since we do not know which point in the parameter space the infimum coverage probability occurs at, the exact confidence coefficients are unknown....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012